III B.Tech - II Semester – Regular Examinations – JUNE 2023

ANTENNAS AND PROPAGATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.		
					Marks		
	UNIT-I						
1	a)	Derive Friis Transmission equation the	L2	CO1	7 M		
		power received to the power transmitted					
		between two antennas separated by a					
		distance $R > 2D^2 / \lambda$.					
	b)	Two X-band (8.2–12.4 GHz) rectangular	L3	CO2	7 M		
		horns, with aperture dimensions of 5.5 cm					
		and 7.4 cm and each with a gain of 16.3 dB					
		(over isotropic) at 10 GHz, are used as					
		transmitting and receiving antennas.					
		Assuming that the input power is 200 mW,					
		the VSWR of each is 1.1, the conduction-					
		dielectric efficiency is 100%, and the					
		antennas are polarization-matched, find the					
		maximum received power when the horns					
		are separated in air by 50m.					
	OR						

	1			г			
2	a)	Write a short notes on antenna efficiency	L2	CO1	7 M		
		and Polarization.					
	b)	A resonant half-wavelength dipole is made	L3	CO2	7 M		
		out of copper ($\sigma = 5.7 \times 10^7$ S/m) wire.					
		Determine the conduction-dielectric					
		(radiation) efficiency of the dipole antenna					
		at $f = 100$ MHz if the radius of the wire b is					
		$3 \times 10^{-4} \lambda$, and the radiation resistance of					
		the $\lambda/2$ dipole is 73 ohms ($\mu_0 = 4\pi \times 10^{-7}$).					
UNIT-II							
3	a)	Derive an expression for the radiation	L3	CO2	7 M		
		resistance of a Half wave dipole antenna.					
	b)	State reciprocity theorem for antennas.	L3	CO2	7 M		
		Prove that the self – impedance of an					
		Antenna in transmitting and receiving					
		antenna are same.					
	1	OR	ſ	1			
4	a)	Discuss the design considerations for the	L3	CO3	7 M		
		Monofilar axial-mode Helical antenna					
	b)	A lossless resonant half-wavelength	L3	CO2	7 M		
		dipole antenna, with input impedance of					
		73 ohms, is connected to a transmission					
		line whose characteristic impedance is 50					
		ohms. Assuming that the pattern of the					
		antenna is given approximately by					
		$U = B_0 \sin^3 \theta$. Find the maximum absolute					
		gain of this antenna.					
	•	·					

		UNIT-III			
5	a)	Discuss broadside array and end fire array	L2	CO2	7 M
	b)	with neat diagrams. Derive expression for antenna array factor.	L3	CO2	7 M
		OR			
6	a)	Explain in detail about the Binomial array	L2	CO2	7 M
		and differentiate it with a linear array.			
	b)	Derive an expression for the radiation	L3	CO2	7 M
		pattern of a broadside uniform linear array			
		of 4- elements with $\lambda/2$ spacing and obtain			
		its radiation pattern.			
		UNIT-IV			
7			L3	CO3	7 M
/	a)	Design a rectangular microstrip patch with	L3	COS	/ 1 V1
		dimensions W and L, over a single substrate, whose center frequency is 10			
		GHz. The dielectric constant of the substrate			
		is 10.2 and the height of the substrate is			
		0.127 cm (0.050 in.). Determine the			
		physical dimensions W and L (in cm) of the			
		patch, taking into account field fringing.			
	b)	Explain the various feeding mechanisms	L3	CO3	7 M
		used in parabolic reflector antennas.			
	1	OR	1	<u>ı </u>	
8	a)	Explain the Half-Wavelength Folded	L2	CO3	7 M
		Dipole.			
	b)	Analyze the rectangular microstrip antenna	L3	CO3	7 M
		with a neat diagram.			

UNIT-V							
9	a)	Derive the relation between Maximum	L3	CO4	7 M		
		usable frequency (MUF) and skip distance.					
	b)	Write a brief note on (i) Wave tilt (ii) Effect	L2	CO4	7 M		
		of earth's curvature.					
OR							
10	a)	Explain the structural details of the	L2	CO4	7 M		
		Ionosphere.					
	b)	What is the radio horizon of a television	L3	CO4	7 M		
		antenna placed at a height of 276 meters? If					
		the signal is to be received at a distance of					
		76 km. What should be the height of					
		receiving antenna?					